Award "Prof. Epsa Urumova" for the best article published in a medical journal for 2019:

"Specificity, strength and evolution of pretransplant donor-specific HLA antibodies determine outcome after kidney transplantation"

- American Journal of Transplantation -

Aleksandar Senev, MD, PhD

🔀 aleksenev@yahoo.com 🄰@Senev

Faculty of Medicine – Skopje, November 2020

2019 Impact factor: 7.338

Received: 12 February 2019	Revised: 26 March 2019	Accepted: 18 April 2019	
DOI: 10.1111/ajt.15414			
ORIGINAL ARTIC	LE	-fm	AJT

Specificity, strength, and evolution of pretransplant donorspecific HLA antibodies determine outcome after kidney transplantation

Aleksandar Senev ^{1,2} 💿 Evelyne Lerut ³ 💿 Vicky Van Sandt ² 💿	Maarten Coemans ¹ 💿
Jasper Callemeyn ¹ Ben Sprangers ^{1,4} Dirk Kuypers ^{1,4}	
Marie-Paule Emonds ^{1,2} 💿 🍴 Maarten Naesens ^{1,4} 💿	

Article selected for Continuing Medical Education (**CME**) & Maintenance of Certification (**MOC**) by American Society of Transplant Surgeons

Kidney Transplantation

Kidney transplantation

Kidney transplant is the best treatment option for people facing kidney failure.

Kidney Transplantation and antibody-mediated rejection

Lefaucheur et al. *The Lancet* 2013;381:313-319

 Antibody-mediated rejection (ABMR) was recognized as a distinct diagnostic entity in 2001 and it's associated with worse renal allograft survival.

Kidney Transplantation and antibody-mediated rejection

J. Sellarés et al. Am J Transplant. 2012; 12: 388-399

Antibody-mediated rejection is considered a major cause of late kidney allograft failure.

Banff classification 2019 for diagnosing active ABMR

Loupy et al. Am J Transplant. 2020; 20: 2318–2331.

Kidney Transplantation and anti-HLA antibodies

Senev et al. Am J Transplant. 2019; 19: 763-780.

The main predictor of poor kidney graft outcome is the presence of **pretransplant** or/and **de novo** donor-specific HLA antibodies (DSA).

Different effects of HLA-DSA and pretransplant are less harmful

Aubert et al. J Am Soc Nephrol. 2017; 28:1912–1923

- Pretransplant DSA (unknown):
 - Class I or class II ? MFI ?
 - Evolution after transplantation ?
- De novo DSA (known):
 - Majority against Class II (predominantly DQ)
 - Persistent de novo DSA bad graft outcome

Temporal dynamics of pretransplant HLA-DSA and diagnosis of ABMR after transplantation

Senev et al. Am J Transplant 2019: 954-955

 It is unclear whether pretransplant DSA evolution is to be considered in the diagnostic, treatment decisions and prognostic use of the Banff classification for diagnosing ABMR

The aims of this study were:

 To investigate the evolution and clinical significance of pretransplant DSA, positive with the single antigen beads assay but negative in CDC crossmatch;

 To elucidate which pretransplant DSA characteristics have a negative impact on posttransplant graft histology and graft survival.

Patients and allograft histology

- Included 924 single kidney transplantations:
 - o consecutive adult recipients with CDC-XM,
- Transplanted at University Hospitals Leuven (Belgium):
 - o between March 2004 and February 2013
 - No patient received preconditioning HLA antibody desensitization
- Indication and protocol kidney allograft biopsies:
 - o Post-transplant at 3M, 1-, 2-, 3-, 4-, 5-year
 - o All rescored to the latest Banff 2015/2017

HLA profiling of the cohort

- The pre- and posttransplant follow-up of anti-HLA antibodies by *Luminex*:
 - LIFECODES LifeScreen Deluxe (LMX) kit
 - o LIFECODES Single Antigen Bead (LSA) kits
- Second field High-resolution HLA typing of the transplant pairs by Next-Generation Sequencing for HLA-A,-B,-C,-DRB₁₃₄₅,-DQA₁,-DQB₁,-DPA₁,-DPB₁:
 - MIA FORA NGS FLEX 11 HLA Typing Kit (Immucor)
 - o Extracellular domains of the HLA molecules

(exon 2, 3 and 4 of HLA class I and exon 2 and 3 of HLA class II molecules)

DSA - Background-corrected median fluorescence intensity (MFI) value equal or above 500.

MMUCOR

Flow chart of patient enrollment and subgroup definition according to preexistence of HLA-DSA

Evolution of pretransplant HLA-DSA early after transplantation

Similar demographic and clinical characteristics

Characteristics	Resolved DSA (n=56)	Persistent DSA (n=51)	p-value	e test
Recipient characteristics at transplantation				
Age (years), mean ±SD	53.1 ±12.9	53.5 ±15.8	0.89	t-test
Gender (male), n (%)	21 (37.5%)	26 (50.9%)	0.16	x ² -test
Caucasian ethnicity, n (%)	54 (96.4%)	50 (98.0%)	0.61	x ² -test
Repeat transplantation, n (%)	29 (51.8%)	30 (58.8%)	0.46	x ² -test
Diabetes mellitus, n (%)	9 (16.1%)	10 (19.6%)	0.63	x ² -test
Donor characteristics at transplantation				
Age (years), mean ±SD	47.3 ±17.6	47.5 ±16.7	0.73	t-test
Gender (male), n (%)	30 (53.6%)	24 (47.1%)	0.50	x ² -test
Deceased donor, n (%)	51 (91.1%)	48 (94.1%)	0.55	x ² -test
Donation after brain death, n (%)	47 (92.2%)	40 (83.3%)	0.18	x ² -test
Transplant characteristics, treatment at transpla	ntation and follow-up			
Cold ischemia time (hours), mean ±SD	14.3 ±5.7	14.7 ±6.0	0.75	t-test
Delayed graft function, n (%)	14 (25.0%)	20 (39.2%)	0.11	x ² -test
Immunosuppression regimen: TAC-MPA-CS, n (%)	52 (92.9%)	48 (94.1%)	0.79	x ² -test
Induction therapy, n (%)	35 (62.5%)	36 (70.6%)	0.38	x ² -test

Different pretransplant DSA characteristics

Characteristics	Resolved DSA (n= 56)	Persistent DSA (n=51)	p-value	test
HLA allele mismatches				
Total HLA-A/B/C/DRB1/DRB345/DQB1/DQA1/ DPB1/ DPA1 mismatches, mean ±SD	9.06 ±2.5	8.78 ± 2.8	0.62	t-test
Pretransplant HLA DSA				
Total number of DSA, mean ±SD	1.45 ±0.7	1.80 ±0.9	0.03	t-test
Locus specificity of anti-HLA-DSA				
DSA against locus A	15 (26.8%)	10 (19.6%)	0.38	x ² -test
DSA against locus B	23 (41.1%)	13 (25.5%)	0.09	x ² -test
DSA against locus C	5 (9.3%)	8 (15.7%)	0.29	x ² -test
DSA against locus DR	14 (25.0%)	14 (27.5%)	0.77	x ² -test
DSA against locus DQ	10 (17.9%)	25 (49.0%)	0.0006	x ² -test
DSA against locus DP	7 (12.5%)	14 (27.6%)	0.05	x ² -test
Immunodominant HLA-DSA				
Anti-HLA class I	32 (57.1%)	13 (25.5)	0.0009	x ² -test
Anti-HLA class II	24 (42.9%)	38 (74.5%)	0.0009	x ² -test
MFI value of immunodominant preDSA, median (IQR)	2083 (3139)	5581 (6825)	<.0001	Wilcoxon

The persistence of pretransplant DSA after transplantation can be predicted

Multivariable logistic regression model

- **MFI** of the immunodominant pretransplant DSA
- Pretransplant DSA with DQ specificity

The area under the ROC curve for the model was AUC = 0.79 (95% CI, 0.71-0.88; p<.0001).

Outcome of patients with resolved DSA is better than in patients with persistent DSA

Landmark survival analysis at 3 months after transplantation

But high incidence of histological lesions of ABMR in the resolved DSA group

Landmark survival analysis at 3 months after transplantation

Patients who developed ABMR_h within the first 3 months are associated with impaired allograft survival

Comparison of the histological appearance of the first biopsy with ABMR_h in the patients with pretransplant HLA-DSA

Characteristics	Resolved DSA (N = 56)	Persistent DSA (N = 51)	p-value	Test
Histology				
Patients with $ABMR_h$ within first 3 months after TX, n (%)	30 (53.6%)	30 (58.8%)	0.58	χ^2 test
Time until ABMR _h (days), mean ± SD	36.2 ± 40.8	32.8 ± 38.9	0.74	t test
Histological appearance of ABMR _h cases				
Glomerulitis Banff score ≥ 1, n (%)	23 (76.7%)	21 (70.0%)	0.56	χ^2 test
Peritubular capillaritis Banff score ≥ 1, n (%)	22 (73.3%)	25 (83.3%)	0.35	χ ² test
C4d depostion Banff score \geq 1, n (%)	20 (66.7%)	16 (53.3%)	0.29	χ ² test
C4d depostion Banff score \geq 2, n (%)	18 (60.0%)	15 (50.0%)	0.44	χ ² test
Endarteritis Banff score ≥ 1, n (%)	13 (43.3%)	17 (56.7%)	0.30	χ ² test
Chronic allograft glomerulopathy Banff score≥ 1, n (%)	1 (3.3%)	0 (0.0%)	0.50	χ ² -test
Interstitial inflammation Banff score ≥ 1, n (%)	15 (50.0%)	14 (46.7%)	0.80	χ ² test
Tubulitis Banff score ≥ 1, n (%)	20 (66.7%)	17 (54.8%)	0.43	χ ² test
Interstitial fibrosis Banff score ≥ 1, n (%)	4 (13.3%)	3 (10.0%)	0.29	χ ² test
Tubular atrophy Banff score ≥ 1, n (%)	16 (53.3%)	9 (30.0%)	0.07	χ ² test
Mesangial matrix expansion score Banff score ≥ 1, n (%)	2 (6.7%)	0 (0.0%)	0.25	χ ² test
Arteriolar hyalinosis Banff score ≥ 1, n (%)	8 (26.7%)	4 (13.3%)	0.11	χ ² test
Vascular intimal thickening Banff score ≥ 1, n (%)	17 (56.7%)	15 (50.0%)	0.60	χ ² test
Microcirculation inflammation Banff score \geq 2, n (%)	28 (93.3%)	24 (80.0%)	0.13	χ ² test
Concomitant TCMR, n (%)	15 (50.0%)	13 (43.3%)	0.60	χ^2 test

Only patients with persistent pretransplant DSA have impaired allograft survival

Landmark survival analysis at 3 months after transplantation

Only patients with persistent pretransplant DSA have impaired allograft survival

Landmark survival analysis at 3 months after transplantation

Multivariable Cox proportional hazards models for graft survival on the biopsies showing ABMR_h

Variables	No. of biopsies	No. of events	HR	95% CI	P value
Multivariate model-1					
Biopsy with ABMR	370	88			
Absent: MFI < 500	262	51	1	-	-
Present: MFI ≥ 500 < 1400	21	1	0.30	0.0-2.2	.23
Present: MFI ≥ 1400	87	36	2.73	1.7-4.3	<.0001
Multivariate model-2					
Biopsy with ABMR (Banff 2015 diagnosis)	370	88			
Absent: HLA-DSA MFI < 1400	283	52	1	-	-
Present: HLA-DSA MFI ≥ 1400	87	36	2.89	1.8-4.5	<.0001
Multivariate model-3					
Biopsy with ABMR	389	104			
Absent: preDSA MFI < 1400	211	41	1	-	-
Present: resolved pretransplant HLA-DSA	80	11	0.66	0.3-1.3	.23
Present: persistent pretransplant HLA-DSA	79	36	3.07	1.9-4.9	<.0001
Present: de novo HLA-DSA	19	16	7.34	4.0-13.5	<.0001

Summary

Resolved pretransplant DSA

 Low-MFI and non-DQ pretransplant DSA, even in the absence of antibody-targeting therapy, often disappear early after transplantation and are not deleterious for graft outcome, despite the association with transient histological abnormalities indicative for ABMR.

No need of antibody removal therapy

Persistent pretransplant DSA

- Persistence of pretransplant DSA after transplantation has a negative impact on graft survival, beyond the diagnosis of ABMR_h according to the current Banff classification.
- DQ-DSA specificity and DSA with MFI > 1400 persisted after TX and associated with impaired graft outcome.

Antibody removal therapy

Visual abstract

Specificity, strength and evolution of pretransplant donorspecific HLA antibodies determine outcome after kidney transplantation

American Journal of Transplantation - Highlights

AJT November 2019 Editors' Picks

This article is included in the podcast of the key papers from the November issue of AJT.

Acknowledgements

Nephrology and Renal Transplantation Research Group Dirk Kuypers Maarten Naesens Ben Sprangers Katrien De Vusser Amaryllis Van Craenenbroeck Kathleen Claes **Björn Meijers Pieter Evenepoel** Bert Bammens Aleksandar Senev Elisabet Van Loon Maarten Coemans Jasper Callemeyn Sander Dejongh Ingrid Arijs Jetty de Loor

Marc Dekens

Jana Paulissen

HILA Laboratory Red Cross Mechelen Marie-Paule Emonds Aleksandar Senev Vicky Van Sandt Liesbeth Daniëls Leen Vandendriessche Johan Kerkhofs

Transplant Surgery

Jacques Pirenne Diethard Monbaliu Ina Jochmans Maurizio Sainz Trasplant coordinators

REGA Institute

Robert Snoeck Graciala Andrei Dimitrios Topalis Olga Mineeva Dominique Schols

Pathology

Evelyne Lerut Francesca Bosisio

Uroradiology

Liesbet De Wever Raymond Oyen Els Vanhoutte Cindy Mai

Transcriptomics

Wouter Bossuyt Frans Schuit Diether Lambrechts

L-BIOSTAT

Geert Verbeke Stephen Fieuws Maarten Coemans Chris Bogaerts

KU Leuven R&D

ESAT-STADIUS

Bart De Moor Willem Mestdagh Thibaut Vaulet Wanqiu Zhang

External collaborator teams

Frans Claas (Leiden) Anat R Tambur (Chicago) Henny Otten (Utrecht) Alexandre Loupy (Paris) Olivier Thaunat (Lyon) Dany Anglicheau (Paris) Pietro Cippa (Lugano) Oriol Bestard (Barcelona) Inge Mertens (Antwerp) Pierre Marquet (Limoges) Wilfried Gwinner (Hannover) Maarten De Vos (Oxford) Brendan Keating (Philadelphia) Menon Madhav (New York) Leonardo Riella (Boston)

FUNDING

FWO – Fund for Scientific Research Flanders ERANET EU Commission FP7 IWT/VLAIO KU Leuven

KU LEUVEN

